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Abstract
Liquid droplets, gas bubbles, and membrane vesicles which are in contact with
chemically structured substrate surfaces can undergo morphological transitions
or shape transformations. The structured surfaces considered here consist of
two types of surface domains, γ and δ, which attract and repel the droplets,
bubbles, and vesicles, respectively. For droplets on a striped γ domain, one
has to distinguish droplets with fixed end caps from those with freely moving
end caps. Both types of channels undergo morphological wetting transitions.
For vesicles, one has a strong adhesion regime in which the vesicle shapes have
constant mean curvature and exhibit effective contact angles. One can then
map the shape bifurcation diagram for vesicles onto the one for droplets if one
includes the constraint of fixed membrane area. We also report preliminary
experimental observations of the adhesion of vesicles to chemically structured
surfaces.

(Some figures in this article are in colour only in the electronic version)

1 http://www.mpikg.mpg.de/th/.
2 Present address: IRI c/o IEMN, F-59652 Villeneuve d’Ascq, France.

0953-8984/05/090537+22$30.00 © 2005 IOP Publishing Ltd Printed in the UK S537

http://dx.doi.org/10.1088/0953-8984/17/9/015
http://stacks.iop.org/JPhysCM/17/S537
http://www.mpikg.mpg.de/th/


S538 R Lipowsky et al

Glossary: List of symbols

A area

Aad adhesion or contact area of vesicle
Aαβ surface area of αβ interface
Ame total membrane area of vesicle

Aσβ contact area of β droplet with σ substrate
α fluid bulk phase

β liquid phase which forms wetting layer
δ lyophobic surface domain which is dewetted by the β phase
�P pressure difference: droplets, �P ≡ Pα − Pβ ; vesicles, �P ≡ Pex − Pin

γ lyophilic surface domain which is wetted by the β phase
κ bending rigidity of membrane

λB de Broglie wavelength
λc critical wavelength of channel perturbations
	 line tension of contact line

L length
Lαβσ total length of contact line for a droplet

Lch lateral extension of channel
Lγ diameter of circular γ domain and width of striped γ domain
Lst lateral extension of striped γ domain

M mean curvature
Mco contact mean curvature


be shape function for pressure difference �P of vesicles
ρex particle number density in exterior compartment
ρin particle number density in interior compartment

Rco contact curvature radius
Rve effective membrane radius defined by membrane area

� tension
�me membrane tension
T temperature (in energy units)

θ contact angle
θδ contact angle on δ surface

θγ contact angle on γ surface
θeff effective contact angle of adhering vesicle
θp contact angle along pinned contact line segment

v reduced and dimensionless volume
V volume

Vβ volume of β droplet
Vin volume of interior vesicle compartment
Vsp volume of sphere

w reduced and dimensionless adhesion free energy density
W adhesion free energy density of vesicle
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1. Introduction

Liquid droplets, gas bubbles, or lipid vesicles which are brought into contact with a substrate
surface attain certain shapes which reflect the molecular interactions between these colloidal
structures and the underlying substrate. These interactions can be modified by chemical and/or
topographical patterning of the substrate surface. A relatively simple example is provided by
surfaces which contain two types of surface domains, γ and δ, which attract and repel the
droplets, bubbles, or vesicles, respectively. In the case of droplets (or bubbles),such chemically
structured surfaces lead to morphological wetting (or drying) transitions at which the wetting
layer changes its shape or morphology in a characteristic and typically abrupt manner [1–3].

Many experimental methods have been developed by which one can prepare chemically
structured substrates with a variety of lyophilic and lyophobic surface domains. The linear size
of these surface domains can be varied over a wide range of length scales from the millimetre
down to the nanometre regime [4–10]. So far, morphological wetting transitions have been
directly observed in the millimetre and micrometre regime but should also occur for surface
domains with nanometre dimensions if one includes line tension effects.

This paper is organized as follows. In section 2, we briefly review morphological wetting
transitions on chemically structured substrates; more extended reviews are given in [11, 12].
We emphasize generic features for wetting of such substrate surfaces and focus on the relatively
simple example of striped surface domains. In section 3, we extend our theory to the adhesion
of vesicles. We focus on the strong adhesion regime and show that strongly adhering vesicles
exhibit shapes which are similar to wetting droplets. The corresponding shape evolution of the
adhering vesicles involves shapes which are stabilized by the constraint of constant membrane
area, and can be studied experimentally by deflation of the vesicles.

Our discussion is based on effective interface and membrane models and will focus on
equilibrium shapes at a single, topographically flat substrate surface. Nonequilibrium phe-
nomena such as spreading on chemically patterned surfaces have been theoretically studied
in [13–16]. Nucleation of droplets at circular surface domains is governed by free energy barri-
ers which exhibit two maxima for intermediate values of the supersaturation [17]. Other work
has addressed liquid bridges across slit pores [18–20] and wetting of topographically structured
substrates [21–24]. Recent reviews on other aspects of wetting can be found in [25–28].

2. Droplets and bubbles at structured surfaces

We now consider the situation in which the chemically structured surface is brought into
contact with two coexisting fluid phases α and β which may be (i) a vapour and a liquid phase
or (ii) two liquid phases. The γ and the δ domains of the structured surface σ are taken to be
lyophilic and lyophobic with respect to the β phase. Thus, the β phase will try to maximize
and to minimize the contact with the lyophilic γ and the lyophobic δ domains, respectively
(we implicitly assume that the structure of the σ surface is not affected by the presence of the
two fluid phases).

In general, the β phase may be a vapour or a liquid phase which corresponds to β bubbles
and β droplets, respectively. In the following, we will always refer to ‘wetting’ and ‘droplets’
but implicitly mean ‘wetting or drying’ and ‘droplets or bubbles’ depending on the nature of
the β phase. From the theoretical viewpoint, there is a subtle difference between droplets and
bubbles as far as the free energy of the system is concerned; this point will be addressed further
below.

The whole system is taken to be in thermal equilibrium characterized by uniform
temperature, and the interface between the two fluid phases is taken to be in mechanical
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equilibrium. This leads to a simple relation for the mean curvature M of the interface. In
general, the latter curvature is a local quantity which varies along the interface. Indeed, the
mean curvature is defined by

M ≡ 1
2 (C1 + C2) (2.1)

where C1 and C2 are the two principal curvatures at a given point of the interface. In mechanical
equilibrium, one has a particularly simple situation since the mean curvature is given by the
Laplace equation

M = (Pβ − Pα)/2�αβ ≡ PLa/2�αβ (2.2)

which depends on the interfacial tension �αβ and on the Laplace pressure PLa = Pβ − Pα , i.e.,
on the difference between the pressures Pβ and Pα in the two fluid phases. Since both �αβ and
PLa are constant (for a given temperature), the (αβ) interface is a surface of constant mean
curvature. A simple example is provided if the β phase forms a spherical droplet of radius R;
in this case, the (αβ) interface has constant mean curvature M = 1/R.

2.1. Droplet volume as control parameter

In general, the chemical equilibrium between the two fluid phases depends on the exchange
of particles through the (αβ) interface. The theory described here applies to three different
situations.

(i) Full chemical equilibrium between the two phases α and β which implies that all molecular
components have the same chemical potential in both coexisting phases. More precisely,
we consider fluid systems in the canonical ensemble characterized by fixed temperature,
fixed total volume V , and fixed number N of molecules. The simplest example is provided
by a one-component system characterized by a single density, the particle number density
ρ, which has two different values,ρo

α and ρo
β , in the coexisting phases α and β, respectively.

Using the Gibbs convention that the interface has no volume and contains no particles, the
particle numbers in the two phases, Nα and Nβ , and the corresponding partial volumes,
Vα and Vβ , satisfy the relations Nα = Vαρo

α and Nβ = Vβρo
β with N = Nα + Nβ and

V = Vα + Vβ . It then follows that the volume Vβ of the β phase is given by

Vβ = (N − ρo
αV )/(ρo

β − ρo
α). (2.3)

(ii) Slow condensation or evaporation of the β phase which leads to a slow change of the
volume Vβ of the β phase. In this case, we implicitly assume that both thermal and
mechanical equilibration is fast compared to these particle exchange processes.

(iii) The limiting case of no particle exchange as applies to β droplets of a nonvolatile liquid.

In all three cases (i)–(iii), we can consider the volume Vβ of the β phase to represent the
basic control parameter. As one increases this volume, one typically encounters a threshold
value at which the wetting droplet undergoes a morphological transition, i.e., a bifurcation
between different equilibrium states. In the next sections, we will discuss two rather simple
examples, a single circular γ domain and a single striped γ domain, in order to illustrate the
generic features underlying these morphological wetting transitions.

2.2. Liquid droplets on circular surface domains

A single circular domain and pinned contact lines. As a simple example, let us first consider
a single lyophilic γ domain which has a circular shape embedded in a lyophobic δ surface.
If we place a small amount of liquid onto this domain, it forms a spherical cap with contact
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angle θ = θγ . As we add more liquid to this droplet, it grows until it covers the whole γ

domain. At this point, the contact line sits on top of the (γ δ) domain boundary. If we continue
to add liquid, the position of the contact line remains fixed while the contact angle grows until
it reaches the limiting value θ = θδ. Beyond this point, the contact line becomes depinned
from the (γ δ) domain boundary and the droplet starts to spread onto the lyophobic δ domain
where it attains the contact angle θδ [1].

This simple example illustrates two important features which apply to wetting of
chemically structured surfaces in general. The first feature is that the contact angle θ of a
liquid droplet does not have a unique value if its contact line is pinned to a (γ δ) domain
boundary of the underlying surface domains. In fact, along any contact line segment (CLS),
which is pinned to a (γ δ) domain boundary, the contact angle θ = θp can vary over the range [1]

θγ � θp � θδ (pinned CLS). (2.4)

This relation holds for arbitrary values of the contact angles θγ and θδ provided θγ < θδ. We
have implicitly assumed here that the width of the (γ δ) domain boundary, i.e., the transition
region between the γ and δ domains, is small compared to the other length scales which
characterize the surface domain pattern. In this limit, the contact angle θ exhibits a jump as
we cross a (γ δ) domain boundary [1, 11].

The second general feature is that the mean curvature M of the liquid droplet is a
nonmonotonic function of the liquid volume Vβ . For a circular γ domain, this can be directly
concluded from the relation (2.4). Indeed, as the contact angle starts to exceed the lower
bound θ = θγ , the spherical cap starts to curve more strongly, and its mean curvature M
starts to increase. This continues until the cap attains the shape of a hemisphere. As one
adds more liquid volume to the hemisphere, its mean curvature M decreases again. Thus, the
mean curvature attains a maximum at the volume of the hemisphere which is characterized
by the contact angle θhs = π/2 = 90◦. This nonmomonotic behaviour of the mean curvature
of droplet shape as a function of its volume is not restricted to the circular domain just
discussed but applies to simply connected domains of arbitrary shape [12] as follows from
general mathematical theorems [29–33]. In order to simplify the following discussion, we will
now assume that the contact angles θγ and θδ of the lyophilic and lyophobic domains satisfy
θγ < θhs = π/2 and θδ > θhs = π/2, respectively. An explicit discussion of the other cases
can be found in the cited literature.

Competition between different interfacial free energies. Even though the nonuniqueness of
the contact angle for pinned contact line segments and the nonmonotonic behaviour of the
mean curvature as a function of the droplet volume are two generic features for wetting of
chemically structured surfaces, a single circular domain also exhibits one rather exceptional
feature since one can always accommodate a spherical cap on top of it. In the limit of large
Vβ , this cap approaches a complete sphere which is the shape with the smallest surface area
Aαβ . Therefore, the cap can simultaneously maximize its contact area Aβγ with the γ domain
and minimize the area Aαβ of its (αβ) interface.

This is no longer possible as soon as the γ domain has a more complex shape. In fact,
one then has a competition between these two interfacial free energy contributions: the droplet
tries to stay on the γ domains and to avoid the δ domains but it can only do this if its (αβ)

interface deviates from a spherical segment. If the droplet is large compared to the size of the
surface domain patterning, the interfacial region close to the contact line develops pronounced
folds [11, 34, 35]. On the other hand, if the droplet size is initially comparable to the size of
the γ domain, the droplet first adapts to the γ domain for small volumes but then undergoes a
morphological wetting transition to a more spherical shape at large volumes [1, 2, 11, 36].
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Two circular surface domains. One simple example for such a morphological wetting
transition is provided by two circular γ domains with identical diameter Lγ . Thus, the total
area of these two domains is given by 2π(Lγ /2)2. The two liquid droplets deposited on these
two domains are taken to be in chemical equilibrium. The corresponding particle exchange
may proceed (i) via the α phase, (ii) via a thin tube-like ‘wormhole’ embedded within the
substrate which starts at one γ domain and ends at the other; or (iii) via a narrow γ stripe
which connects the two circular γ domains. In the two cases (ii) and (iii), the additional liquid
volume (i) in the ‘wormhole’ and (ii) on the γ stripe are taken to be so small that they can be
ignored compared to the volume deposited on the two circular domains.

After a sufficient amount of liquid has been deposited to completely cover the two circular
domains, the liquid morphology consists of two spherical caps which are identical and have
the same contact angle θ = θp which satisfies θγ � θp � π/2. As one adds more liquid, the
spherical caps grow until they become two hemispheres characterized by the contact angle
θp = θhs = π/2. At this point, the morphology undergoes a continuous bifurcation: the
symmetry between the two spherical caps is spontaneously broken since one cap starts to grow
whereas the other cap starts to shrink. Since the two circular domains have the same area, the
two spherical caps have identical contact areas. In addition, they must have the same mean
curvature as follows from the Laplace equation (2.2). This implies that one obtains a complete
sphere if one combines the small cap with the large one by pasting them together along their
flat contact areas.

In order to discuss this bifurcation in more detail, the critical volume consisting of two
hemispheres with radius Lγ /2 is denoted by

V∗ ≡ 2(2π/3)(Lγ /2)3 (2.5)

and the deviation from this critical volume by

ε ≡ (Vβ − V∗)/V∗. (2.6)

It is also convenient to define the reduced free energy

� f ≡ �F/(�αβ π L2
γ ) (2.7)

where �F denotes the difference between

(i) the interfacial free energy of the substrate in partial contact with the β droplets and with
the α phase and

(ii) the interfacial free energy of the substrate in contact with the α phase alone.

For the symmetric droplet pattern consisting of two identical spherical caps on the two
circular γ domains, the reduced free energy behaves as

� fs ≈ � f∗ + 2
3 ε − 4

81 ε3 (2.8)

for small ε (which may be positive or negative in this case) where �f∗ is the reduced free energy
of the two-hemisphere state. For the asymmetric state, on the other hand, which consists of
one larger and one smaller droplet, the free energy has the asymptotic behaviour

� fas ≈ � f∗ + 2
3 ε − 1

9 ε2 (2.9)

for small ε > 0. Comparison of the two free energies (2.8) and (2.9) shows (i) that the
asymmetric droplet pattern has lower free energy for ε > 0 or Vβ > V∗ and (ii) that the
transition at Vβ = V∗ is continuous (or of second order) since the first and second derivatives
of the interfacial free energy with respect to Vβ are continuous and discontinuous, respectively.

The continuous nature of this morphological transition can be seen more clearly if one
considers an appropriate order parameter such as the difference between the two partial β
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Figure 1. Liquid droplet (light) on a lyophilic γ domain (dark) within a lyophobic δ domain
(white). The γ domain has the shape of a long, rectangular stripe; its contact angle θγ is smaller
than the boundary value as given by (2.11). With increasing volume, the liquid droplet attains the
four states I–IV: (a) for relatively small volumes, the droplet has the shape of a spherical cap I
with a contact line which eventually touches the γ δ domain boundary; (b) as the volume is further
increased, an extended channel II is formed which has freely moving end caps; (c) channel III
covers the γ stripe completely and, thus, has fixed end caps; (d) as one adds even more liquid
volume, the droplet undergoes a morphological transition to channel state IV with a single bulge.

volumes on the two circular domains. Thus, let V1 and V2 denote these two partial volumes.
One then finds that

(V1 − V2)/V∗ = 0 for ε � 0
≈ ± [(3/2) ε]1/2 for small ε > 0.

(2.10)

This analysis can be extended to N circular domains [1]. For N > 2, one finds a
morphological transition between N identical spherical caps for small Vβ to a droplet pattern
consisting of one large and N − 1 small spherical caps for large Vβ . The latter bifurcation is
discontinuous (or of first order) and exhibits hysteresis. At the transition point, the pattern of
identical droplets is characterized by the contact angle θ ≡ θ∗(N) < θhs = π/2. The latter
pattern remains metastable for the contact angle range θ∗(N) < θp < θhs and becomes unstable
at the universal, i.e., N-independent, value θ = θhs = π/2.

2.3. Liquid channels on striped surface domains

Let us now consider a rather anisotropic γ domain which has the shape of a rectangular stripe
as in figure 1. The width of this stripe is denoted by Lγ , its length by Lst with Lst � Lγ .
Now, let us deposit a certain amount of β liquid onto this stripe. For sufficiently small volume
Vβ , the liquid forms a small spherical cap bounded by a circular contact line with contact
angle θ = θγ . This spherical cap grows as we increase the liquid volume until the contact line
touches the (γ δ) domain boundary; see figure 1(a). If the volume is increased beyond this
point, the evolution of the droplet shape depends strongly on the value of the contact angle θγ .

In fact, the contact angle θγ on the lyophilic stripe exhibits the boundary value [3]

θ∞
ch = arccos(π/4) � 38◦ (2.11)

which separates two different wetting regimes (the subscript ch and the superscript ∞ indicate
that this is the contact angle of a channel in the limit of large volumes). These two regimes
are characterized by qualitatively different behaviour as one deposits an increasing amount
of liquid onto the stripe. If the stripe has contact angle θγ < θ∞

ch , the wetting layer forms a
channel which becomes longer and longer as one deposits more and more liquid. For θγ > θ∞

ch ,
on the other hand, such a long channel cannot be attained but only a short one which gradually
transforms into a localized droplet. In other words, it is easy to ‘paint’ long γ stripes provided
θγ < θ∞

ch but it is impossible to do so for θγ > θ∞
ch .
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Shape evolution of liquid channels. The shape evolution shown in figure 1 corresponds to
the situation with θγ < θ∞

ch . It is important to note that the contact line of the channel consists
of two distinct types of segments:

(i) the two lateral segments of the contact line on both sides of the channel which are pinned
along the (γ δ) domain boundary of the underlying surface stripe—along those domain
boundaries, the contact angle θ = θp is not fixed but satisfies the inequality θγ < θp < θδ

as in (2.4)—and
(ii) the two short transverse segments of the contact line which bound the two end caps of the

channel.

Since these latter segments lie within the γ surface domain, the corresponding contact angle
has the fixed value θ = θγ .

Now, as we continue to add liquid volume, the channel continues to grow until it covers the
stripe completely as shown in figure 1(c). At this point, the transverse contact line segments
at the two end caps of the channel become pinned to the γ δ domain boundary as well. Thus,
as soon as the channel covers the stripe completely, the contact angle at the two end caps is
no longer fixed but can now also vary within the whole range θγ < θp < θδ as given by (2.4).
As we add even more liquid, the contact angles along the pinned contact line continue to grow
until the channel becomes unstable and develops a single bulge as shown in figure 1(d). This
latter morphological wetting transition was first studied, both experimentally and theoretically,
in [2].

Liquid channels with fixed end caps. If the stripes are relatively long, one will intuitively
expect that the channel instability will not depend on the precise boundary conditions at the
fixed end caps of the channel. Furthermore, away from these end caps, the channel should
attain a cross-section which is well approximated by the segment of a cylinder. Thus, let us
consider such a cylindrical segment which is characterized by constant lateral contact angle
θ = θp and by periodic boundary conditions at the channel ends. The stability of such a cylinder
can be determined analytically for all shape deformations which (i) conserve the liquid volume
and (ii) leave the position of the contact line unchanged. One then finds that the cylinder is
locally stable for contact angle θp < θhs = π/2 = 90◦ but unstable for θp > θhs provided the
wavelength λ of the shape deformation exceeds a certain threshold value λc as given by [2]

λc =
[

π/2

θ2
p − (π/2)2

]1/2
θp

sin(θp)
Lγ (2.12)

which depends on θp and on the width Lγ of the hydrophilic stripe. This implies that the
cylindrical channel is unstable if the lateral contact angle exceeds θhs = π/2. In fact, the
channel undergoes a morphological wetting transition before it reaches this instability. Beyond
the transition, the equilibrium state consists of a channel with a single bulge as observed
experimentally and as explicitly calculated by numerical minimization of the interfacial free
energy [2].

Liquid channels with freely moving end caps. Now, let us return to liquid channels which
are short compared to the lateral extension Lst of the rectangular stripe and, thus, have freely
moving end caps [37, 3, 38]. It is again useful to approximate such a channel morphology
by a cylindrical segment with a rectangular contact area which has the same width, Lγ , as
the underlying γ domain. At its two ends, this cylindrical channel is now bounded by two
auxiliary walls which are perpendicular both to the plane of the substrate and to the long axis
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Figure 2. Shape bifurcation diagram for a liquid droplet on top of a striped γ domain as shown
in figure 1 which depends on the contact angle θγ for the lyophilic γ domain and on the liquid
volume V ≡ Vβ given in units of L3

γ where Lγ is the width of the striped domain. The transition
line with θγ = θ∗ separates channel states at small θγ and/or small V from bulge states at larger θγ

and/or larger V . The two dashed curves with θγ = θbu and θch correspond to the instability lines
for bulge and channel states, respectively [3]. The vertical dotted line describes the threshold value
θγ = θ∞

ch � 38◦ as given by (2.11).

of the channel. The contact angle of the liquid on these walls is taken to be π/2 which implies
that the wall material is ‘neutral’ and does not prefer the β or the α phase. In addition, these
auxiliary walls can freely adjust their position which corresponds to the situation of freely
moving end caps of the channel.

Within the subspace of these channel configurations, one can analytically determine the
state of lowest free energy for fixed volume Vβ . One then finds that the lateral contact angle
θp of this latter state is related to the transverse contact angle θγ on the γ domain via [3]

θγ = arccos

(
θp

2 sin θp
+

cos θp

2

)
. (2.13)

The function θγ = θγ (θp) as given by (2.13) has a single maximum for 0 < θp < π which
is attained for θp = θp,m = π/2. The corresponding contact angle on the γ domain is given
by θγ,m = arccos(π/4) � 0.6675 � 38.24◦. Thus, the variational calculation just described
has no solution for contact angles θγ which satisfy θγ > θγ,m . Therefore, one concludes that
γ stripes with θγ > θγ,m cannot support extended channels. This is confirmed by numerical
minimization of the corresponding interfacial free energies which are described further below.
The corresponding bifurcation diagram is shown in figure 2. This analysis implies that the
contact angle θγ,m as obtained from the maximum of the relation (2.13) can be identified with
the boundary value θ∞

ch which is, thus, given by (2.11).
The morphological bifurcation diagram displayed in figure 2 depends on two basic control

parameters, contact angle θγ and liquid volume Vβ, and exhibits a line of morphological wetting
transitions. In general, one may probe these transitions either by varying the volume for fixed
contact angle θγ or by varying the contact angle for fixed volume Vβ . The latter type of
variation is experimentally accessible if one studies the wetting of electrodes, covered by a
thin insulating film, since the contact angle decreases as one increases the applied voltage [39].

Extended surface domains of different shapes. The striped surface domain corresponds to
the cross-section of a cylinder. A linear chain of identical circular domains corresponds to the
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cross-section of a linear chain of identical spheres which touch each other. In general, one
may consider a family of unduloids which interpolates between the cylinder and the chain of
spheres. If one considers cross-sections through these unduloids which contain the rotation
axis of these shapes, one obtains ‘unduloid stripes’ which interpolate between the rectangular
stripe and the chain of circles.

It is plausible to expect that the channels on such ‘unduloid stripes’ are again stable up to
the lateral contact angle θp = θhs = π/2. For this latter angle, the channel is bounded by half
of the unduloid from which the stripe was derived. One should also expect that these stripes
will again exhibit a threshold value θγ = θ∞

ch . The theoretical approach described in [3] can
also be applied to a linear chain of circular domains, which leads to θ∞

ch = arccos(2/3) � 48◦
in this latter case. Therefore, for the intermediate ‘unduloid stripes’, the threshold value θ∞

ch
is expected to satisfy arccos(π/4) � θ∞

ch � arccos(2/3) but this remains to be shown.
Related surface domain geometries are crossed stripes or ‘stars’ of stripes. Such a ‘star’

may consist of a central circular domain of radius Rγ from which several stripes with width
Lγ = Rγ emanate. One would then expect to find a limiting shape with mean curvature
M = 1/Rγ which locally resembles a hemisphere with radius Rγ and cylindrical channels
with radius Lγ /2 = Rγ /2.

The γ domains discussed so far are simply connected. If the contact line is pinned to the
boundary of such a domain, the (αβ) interface attains the shape of a constant mean curvature
surface, the boundary of which consists of a single closed curve. Using the various experimental
methods described above, one can easily construct multiply connected γ domains, i.e., γ

domains which enclose δ domains. A simple example is provided by a ring-shaped or annular
γ domain. If the annulus is relatively narrow, one finds a sequence of two morphological
transitions [8]: first, a transition from a uniform ring-like channel to a channel with a bulge
and subsequently a transition from the bulgy channel to a spherical cap which covers both
the γ annulus and the interior δ domain. Another multiply connected domain which has been
studied both experimentally and theoretically is a perforatedγ domain which contains a regular
pattern of circular δ domains [7].

2.4. General theoretical framework

Free energy functional. Consider a certain amount of β phase with volume Vβ which is
bounded by two interfaces with surface areas Aαβ and Aβσ , respectively. These two interfaces
intersect along the contact line with total length Lαβσ . An equilibrium state of such a droplet
corresponds to a minimum of the free energy functional [1, 11]

F̃ = Vβ�P + F̃� + F̃	. (2.14)

The first term depends on the volume Vβ and on the difference �P ≡ Pα − Pβ between the
pressures in the α and β phase. In the fixed volume ensemble, the parameter �P represents a
Lagrange multiplier. If the β phase is a compressible liquid or gas, the first term Vβ�P should
be replaced by the bulk free energy Fβ(Vβ) + Fα(V − Vβ) with ∂ Fβ(Vβ)/∂Vβ = −Pβ and
∂ Fα(V − Vβ)/∂Vβ = Pα .

The second term F̃� of the free energy functional (2.14) contains the excess free energy
of the interfaces arising from the β phase which depends on the interfacial tensions �i j and is
given by

F̃� =
∫

d Aαβ �αβ +
∫

d Aβσ [�βσ − �ασ ]. (2.15)

The interfacial tension �αβ of the fluid–fluid (αβ) interface is uniform and homogeneous. In
contrast, the substrate surface may contain chemical heterogeneities or patterns which lead to
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position-dependent tensions �βσ = �βσ (x) and �ασ = �ασ (x) where x ≡ (x1, x2) represents
appropriate surface coordinates.

The third term F̃	 of the free energy functional (2.14) has the form

F̃	 =
∫

dLαβσ 	 (2.16)

with the contact line tension 	 = 	(x) which can be positive or negative [40].

Stationary or extremal shapes. The first variation of the free energy functional as given
by (2.14) leads (i) to the Laplace equation as given by (2.2) with the Laplace pressure
PLa = −�P and (ii) to a general boundary condition at the contact line. In order to state
this boundary condition in its general form, we take the orientation of the contact line to be
positive (or anticlockwise) if we look onto the substrate surface from within the β droplet. This
line is parametrized by its arc length � which implies that its tangent vector t is a unit vector.
The plane normal to this tangent vector contains the normal vector Nσ of the σ substrate. The
general boundary condition at the contact line which represents a generalization of the Young
equation is then given by [21, 11, 41, 42]

�αβ cos θ = �ασ − �βσ − 	 ĉg − ∇̂	 · (t × Nσ ) on Lαβσ (2.17)

from which one can derive a variety of special cases as considered in [43–46]. The term
proportional to the line tension 	 depends on the geodesic curvature ĉg ≡ −(t × Nσ ) · dt/d�

of the contact line. The product ∇̂	 · (t × Nσ ) denotes the directional derivative of 	 along a
curve which lies within the substrate surface and which has tangent vector t × Nσ at the point
where it crosses the contact line (mathematically speaking, the ‘gradient’ ∇̂	 corresponds to
a one-form, i.e., to an element of the cotangent space).

The contact line equation as given by (2.17) provides a certain functional relationship
between the line tension and various geometric parameters such as the local contact angle θ

and local geodesic curvature ĉg of the contact line. This relationship was recently confirmed
by extensive numerical calculations [34]. As pointed out in [11], the gradient term ∼∇̂	

in (2.17) implies that the contact line develops a strong bend or kink when it crosses the
domain boundary between two surface domains.

3. Adhesion of vesicles

3.1. Shape of free vesicles

Lipid membranes in water have two important properties. Since the molecules assembled
in these membranes are highly insoluble in water, the total number of membrane molecules
does not change on the relevant timescales. This implies that the membrane area is also fixed
provided the membrane is studied at constant temperature (since the thermal area expansivity
of the membrane is positive, the membrane expands with increasing temperature). In addition,
these membranes are permeable to water but highly impermeable to ions, macromolecules, and
nanoparticles which implies that closed membranes or vesicles adapt their volume in such a
way that the interior and exterior compartments are osmotically balanced. The latter adaptation
is possible for free vesicles as long as these vesicles have a nonspherical shape.

Free energy of free vesicles. First, let us briefly discuss such a free vesicle, i.e., a vesicle
which does not interact with other colloidal structures or interfaces. Its shape depends on two
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basic geometric parameters, the interior volume Vin of the vesicle and the surface area Ame of
the vesicle membrane which defines the effective vesicle radius

Rve ≡ (Ame/4π)1/2. (3.1)

The vesicle shape is then determined from the free energy functional

F̃ve = Vin�P + Ame�me + F̃be (3.2)

where the pressure difference �P = Pex − Pin and the tension �me represent two Lagrange
multipliers. For a membrane without spontaneous curvature, the bending free energy functional
F̃be is given by [47, 48]

F̃be =
∫

Ame

d A 2κ M2, (3.3)

with bending rigidity κ and (local) mean curvature M .
Minimization of the free energy functional as given by (3.2) leads to shapes for which the

pressure difference has the scaling form

�P = κ

Vin

be(Vin/Vsp) with Vsp ≡ 4π

3
(Ame/4π)3/2 (3.4)

with a dimensionless scaling function 
be (which is contained in figure 8 of [49]) where Vsp

is the volume of a spherical vesicle with the same membrane area.

Osmotic pressure. The relation (3.4) must also hold for a system in which the pressure
difference �P arises from the osmotic conditions. Thus, let us consider the situation in which
the interior and exterior volumes, Vin and Vex, of the vesicle contain Nin and Nex osmotically
active particles, respectively. For dilute solutions of these particles, the osmotic pressure
difference between the interior and the exterior vesicle compartment is then given by

Pos ≡ Pin − Pex = −�P = T

(
ρex − Nin

Vin

)
with ρex ≡ Nex

Vex
(3.5)

at temperature T (which is measured in energy units, i.e., T stands for the Boltzmann factor
kB times the temperature in Kelvin).

A combination of (3.5) and (3.4) leads to ρexVin = Nin +(κ/T ) 
be(Vin/Vsp). In principle,
this is a nonlinear equation for the volume Vin but, for giant vesicles, one usually has Nin � κ/T
which implies that the vesicle volume is simply given by Vin ≈ Nin/ρex. Thus, for Nin � κ/T ,
the vesicle adapts its volume in such a way that the interior and the exterior densities become
essentially equal.

In the osmotic pressure ensemble, the free energy functional of a free vesicle has the form

F̃ve = Fos(Vin) + Ame�me + F̃be (3.6)

with the osmotic free energy Fos = Fos(Vin). The osmotic pressure difference then follows
from

∂Fos/∂Vin = −Pos = Pex − Pin. (3.7)

If the solution of osmotically active particles is dilute, the osmotic free energy Fos can be
calculated by ideal solution theory which leads to

Fos = −T Nin ln

(
e

λ3
B

Vin

Nin

)
− T Nex ln

(
e

λ3
B

V − Vin

Nex

)

≈ T Nin [− ln(Vin/VB) + Vin/Vos] for Vin 
 V (3.8)

with VB ≡ λ3
B Nin/e and Vos ≡ Nin/ρex where e and λB are the Euler number and the de Broglie

wavelength, respectively. Using this expression in (3.7), one recovers the expression (3.5) for
the osmotic pressure difference.
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Spherical and cylindrical membrane segments. For fixed membrane area Ame, the vesicle
volume cannot exceed the limiting value Vin = Vsp corresponding to a spherical shape. If the
vesicle has such a shape and is further inflated with positive osmotic pressure Pos = Pin − Pex,
the vesicle membrane will experience a tension �me which satisfies the Laplace-type equation

2M�me = Pos = T (ρin − ρex) > 0 with ρin ≡ Nin/Vin; (3.9)

compare (2.2). Real membranes such as lipid bilayers have a finite area compressibility which
implies that the membrane tension leads to an area expansion of a few per cent before the
membrane ruptures (here and below, we ignore entropic effects arising from thermally excited
shape fluctuations of the membranes). The corresponding tension of rupture, �rup, is of the
order of a few mJ m−2.

For inflated vesicles, the parameters � and �P which enter the free energy functional
as given by (3.2) are no longer Lagrange multipliers but represent physical quantities. In this
situation, the bending free energy (3.3) corresponds to a correction term which can be ignored
for a spherical vesicle governed by the Laplace-type equation (3.9). Indeed, the latter shape is
not affected if we consider the limit of vanishing bending rigidity κ = 0

This is, however, not true in general, since the free energy functional (3.2) also leads to
locally stable shapes for which the limit of vanishing bending rigidity is singular. One example
is provided by thin membrane tubes or cylinders, often referred to as ‘tethers’ [50, 51]. The
curvature of these cylindrical tubes increases with decreasing bending rigidity κ and diverges
in the limit of κ = 0.

This singular behaviour can be deduced, in a very general way, from the first variation of
the free energy functional (3.3). For a shape with constant mean curvature, M = constant,
this variation leads to

−Pos + 2�me M − 4κ M(M2 − G) = 0 (3.10)

as follows from the results of [52] where the Gaussian curvature G is defined by

G ≡ C1C2 (3.11)

and C1 and C2 are the principal curvatures of the membrane surface; compare (2.1).
For a spherical membrane segment with curvature radius R, one has C1 = C2 = 1/R

which implies M2 − G = 0 and the relation (3.10) reduces to the Laplace-type equation (3.9)
irrespective of the value for κ . In contrast, for a cylindrical membrane segment, the Gaussian
curvature vanishes and one obtains

−Pos + 2�me Mcy − 4κ M3
cy = 0 (3.12)

which is a cubic equation for the mean curvature M = Mcy of the cylindrical tube. Depending
on the parameters Pos, �me, and κ , this equation has one, two, or three real solutions for Mcy.

Coexistence of spherical and cylindrical segments. Now, let us focus on the situation in which
the cylindrical membrane tube is connected to a spherical membrane segment characterized
by positive osmotic pressure Pos > 0, positive membrane tension �me > 0, and positive mean
curvature M = Msp = 1/Rsp > 0. This implies that the cylindrical tube has a positive mean
curvature M = Mcy > 0 as well which satisfies (3.12) with Pos > 0 and �me > 0.

It is now convenient to introduce the quantity

Q ≡ 63/2 Pos κ1/2/8�3/2
me . (3.13)

The cubic equation (3.12) with Pos > 0 and �me > 0 has two real solutions with M = Mcy > 0
for

0 � Q < 1, (3.14)
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one such solution for Q = 1, and no such solution for Q > 1 (we discard the solution with
M = Mcy < 0 which is present for all Q > 0). For 0 � Q < 1, one of the two solutions
corresponds to a locally stable state, the other one to a locally unstable state. The locally stable
cylindrical tube has the mean curvature

Mcy =
(

2�me

3κ

)1/2

cos

(
arccos(Q) − π

3

)
(3.15)

for 0 � Q < 1 and merges with the unstable one for Q = 1. For Q = 0 and 1, the
expression (3.15) becomes Mcy = (�me/2κ)1/2 and Mcy = (�me/6κ)1/2, respectively. For
intermediate values of Q, the quantity Mcy decreases monotonically with increasing Q. Thus,
the radius Rcy = 1/2Mcy of the cylindrical tube satisfies the inequalities

(κ/2�me)
1/2 � Rcy < (3κ/2�me)

1/2 (3.16)

and vanishes in the singular limit of small κ .
The mean curvature Mcy as given by (3.15) depends on the membrane tension �me and on

the osmotic pressure Pos. Since the cylindrical membrane tube is connected to a spherical
membrane segment with M = Msp = 1/Rsp, the two parameters �me and Pos are not
independent but related by the Laplace-type equation �me = Rsp Pos/2. In this case, the
radius Rcy of the cylindrical tube behaves as

Rcy ≈ (κ/Rsp Pos)
1/2 for large Pos (3.17)

and/or small κ , and fixed curvature radius Rsp of the spherical segment. Thus, in the limit of
large osmotic pressure, a spherical vesicle with small mean curvature Msp = 1/Rsp, which is
visible in the optical microscope, may coexist with a cylindrical tube with large mean curvature
Mcy ≈ (Rsp Pos/κ)1/2, which is invisible in the microscope. For real vesicles, the divergence
of Mcy ∼ P1/2

os is truncated by the rupture of the vesicle membrane.
The spherical membrane segment and the cylindrical tube are connected by an intermediate

membrane region with variable mean curvature. Indeed, in this region, the mean curvature
M must interpolate between the small value M = Msp of the spherical segment and the large
value M = Mcy of the cylindrical tube. The shape of this intermediate region has been studied
in [53] using the Monge parametrization. In general, one would have to solve equation (3.10)
supplemented by another term which is given by the Laplace–Beltrami operator (or generalized
Laplacian) acting on the mean curvature [52]. This is a rather difficult calculation and has not
been attempted here. However, the relatively simple analysis described above shows in a rather
general way (i) that the limit of small bending rigidity is singular and (ii) that it can lead to
‘hairy’ spheres, i.e., to spheres which are connected to thin cylindrical tubes.

3.2. Adhering vesicles and contact curvature

The free energy functional for an adhering vesicle with volume Vin, surface area Ame, and
adhesion area Aad is given by [54]

F̃ = F̃ve + F̃ad (3.18)

with F̃ve as in (3.2) and the adhesion free energy

F̃ad = −
∫

d Aad |W | (3.19)

where |W | is the adhesion free energy per unit area. Here and below, the quantity |W |
may, in general, depend on the surface coordinate x ≡ (x1, x2) corresponding to chemically
heterogeneous substrate surfaces. Another extension of this model was recently studied in [55]
by including a localized force which pulls the adhering vesicle away from the substrate surface.
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Minimization of the free energy functional as given by (3.18) leads to the contact principal
curvature [54]

Cco = (2|W |/κ)1/2 (3.20)

along the contact line of the vesicle or to the corresponding curvature radius

Rco = 1/Cco = (κ/2|W |)1/2. (3.21)

Since the substrate is flat, the curvature tangential to the contact line vanishes and the contact
mean curvature along the contact line is given by Mco = Cco/2 = (|W |/2κ)1/2.

3.3. Strong adhesion regime

The strong adhesion regime corresponds to the situation in which the contact curvature radius
Rco is small compared to the vesicle size Rve as defined by (3.1). Thus, the strong adhesion
regime is given by

Rve � Rco or |W | � |W |∗ ≡ 2πκ/Ame. (3.22)

For a lipid bilayer, the bending rigidity κ is of the order of 10−19 J. If the vesicle has a radius
of 5 µm, the inequality (3.22) implies |W |∗ = 2 ×10−6 mJ m−2. If this energy per unit area is
expressed in terms of the thermal energy T at room temperature, one obtains |W |∗ = T/2 µm2,
a rather small adhesion energy. Thus, the strong adhesion regime should apply as long as (i)
the bending rigidity is not much larger than 10−19 J, (ii) the linear vesicle size is not much
smaller than a couple of micrometres, and (iii) the adhesion is mediated by a large number of
molecular interactions.

In the following, we will study the strong adhesion regime for vesicles in contact with solid
substrates. Another experimental set-up, which can be used to probe this regime, is provided
by the adhesion of vesicles which are aspirated by micropipettes [56, 57].

Vesicle shapes for strong adhesion. The limiting case Rco/Rve = 0 is obtained for a
hypothetical membrane with vanishing bending rigidity κ = 0. In this case, the free energy
functional (3.18) for the adhering vesicle reduces to

F̃ = Vin�P + Ame�me −
∫

d Aad |W |. (3.23)

Comparison of this free energy functional with the corresponding functional of a droplet as
given by (2.14) and (2.15) with vanishing line tension 	 = 0 shows that these two functionals
are identical if one uses the correspondence

�me = �αβ and �me − |W | = �βσ − �ασ . (3.24)

This implies that, for the limiting case with κ = 0, the equilibrium shape of the vesicle, as
obtained from minimization of the free energy functional (3.23), is characterized by constant
mean curvature as described by the Laplace-type equation (3.9) and by a Young-type equation
for the contact angle as follows from (2.17) with vanishing line tension 	 = 0.

For κ = 0, the contact curvature Rco vanishes, and the contact angle of the vesicle
corresponds to the ‘microscopic’ contact angle directly at the contact line. For small but
finite values of the parameter Rco/Rve, this ‘microscopic’ contact angle vanishes but one can
introduce an effective contact angle θeff as has been explicitly shown for a homogeneous
substrate with position-independent |W | [54].

In this latter case, the free energy functional (3.23) with κ = 0 is minimized by vesicle
shapes which correspond to spherical caps in complete analogy with liquid droplets. For
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κ > 0 but small Rco/Rve, the shape of the vesicle consists of a spherical cap, a strongly curved
membrane segment along the contact line, and a flat membrane segment which represents the
adhesion (or contact) area of the vesicle. The strongly curved membrane segment with mean
curvature ∼Mco = (|W |/2κ)1/2 provides the connection between the spherical cap and the
contact area. On length scales which are large compared to the contact curvature radius Rco,
the adhering vesicle can be characterized by an effective contact angle θeff [54]. This behaviour
was also obtained by calculating the vesicle shapes in a systematic perturbation expansion [58].
Thus, even though the bending free energy ∼κ represents a singular perturbation3, the spherical
cap shapes corresponding to adhering vesicles with κ = 0 are obtained in a smooth and
nonsingular manner.

As in the case of free vesicles, these spherical caps may again coexist with cylindrical
membrane tubes as observed experimentally in [60]. The radius of these tubes still satisfies the
inequalities (3.16) and again exhibits the asymptotic behaviour (3.17) where Rsp now denotes
the curvature radius of the spherical caps. Instead of the osmotic pressure, the basic control
parameter may be taken to be a localized applied force. A detailed theoretical analysis of the
latter situation has been given in [61].

In the following, we will ignore the possibility of cylindrical membrane tubes or ‘tethers’
which are singular in the limit of small κ and will focus on spherical caps for which this limit
is smooth. In this case, the vesicle shapes are governed by the Laplace-type equation (3.9) and
by the Young-type equation �me cos(θeff) = |W | − �me or [54]

|W | = �me[1 + cos(θeff)]. (3.25)

The Laplace-like equation implies that these shapes have constant mean curvature and the
Young-like equation implies that they exhibit effective contact angles. Both equations also
apply to the shapes of liquid droplets. There is one important difference,however. For droplets,
the contact angle is determined by the interfacial tensions which represent material parameters.
In contrast, for vesicles in the strong adhesion regime, both the effective contact angle θeff and
the membrane tension �me do not represent material parameters but depend on the vesicle
geometry.

A combination of the Laplace-type (3.9) and the Young-type equation (3.25) eliminates
the membrane tension � and leads to

Pin − Pex = |W |M/[1 + cos(θeff)] (3.26)

which shows explicitly that the vesicle shape in the strong adhesion regime is governed by the
balance between the osmotic and the adhesive stresses.

Spherical cap shapes on homogeneous surfaces. The spherical cap shapes, which the vesicles
attain in the strong adhesion limit for a homogeneous substrate with position-independent |W |,
can be parametrized in terms of their total surface area Ame = 4π R2

ve and their height H . It is
then convenient to introduce the dimensionless height

h ≡ H/2Rve with 0 � h � 1. (3.27)

In terms of Ame and h, the interior cap volume is Vin = (2π/3)(Ame/4π)3/2h(3 − h2). Within
the physically meaningful range 0 � h � 1, this relation can be inverted to obtain h =
h(Ame, Vin). The area of the adhering membrane segment is given by Aad = (1/2)Ame(1−h2)

and increases monotonically with decreasing volume Vin. Therefore, the vesicle spreads over
the substrate surface as it is deflated.

3 In the limit of small Rco/Rve, the adhesion free energy scales as Fad ∼ κ(Rco/Rve)
−2 and the leading contribution

to the bending free energy arising from the strongly curved membrane segment behaves as Fbe ∼ κ(Rco/Rve)
−1 as

shown in [59] for �P = 0.
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The effective contact angle θeff of the spherical cap is obtained from

cos(θeff) = (1 − 3h2)/(1 + h2). (3.28)

Since the cap height h = h(Ame, Vin), the contact angle θeff depends only on vesicle volume
and membrane area and does not reflect any material parameters. Likewise, the membrane
tension has the form

�me = |W |/[1 + cos(θeff)] = |W |(1 + h2)/2(1 − h2) (3.29)

which also depends on vesicle volume and membrane area via h = h(Ame, Vin). The membrane
tension �me monotonically decreases with decreasing cap height h and attains its minimum
value �me = |W |/2 for h = 0 and θeff = 0 which corresponds to a completely deflated vesicle
with the shape of a flat pancake. Thus, deflation of a strongly adhering vesicle leads to a
decrease of the membrane tension �me. The pancake limit involves a highly curved membrane
segment along the contact line of the vesicle with bending free energy Fbe ∼ κ Rve/Rco [59].
In addition, the height of a real pancake exceeds the thickness of two bilayers which is about
8 nm.

On the other hand, if one inflates a strongly adhering vesicle, the cap height h increases
which leads to an increase of the membrane tension �me according to (3.29). In fact, this
tension becomes arbitrarily large as h approaches its upper limit h = 1 corresponding to
vanishing adhesion area Aad = 0. This implies that inflation of a strongly adhering vesicle
usually leads to rupture of the vesicle membrane. As before, the finite area compressibility
of the bilayer membrane does not affect this behaviour in a qualitative way. Thus, from the
maximal height hmax and from the tension of rupture, �rup, one can determine the adhesion
free energy density |W | via

|W | = �rup2(1 − h2
max)/(1 + h2

max). (3.30)

In equilibrium, the spherical cap must satisfy the stress balance relation (3.26). If this
relation is combined with the expression (3.5) for the osmotic pressure difference �P , one
obtains the implicit equation

w h2(3 − h2) + [r h(3 − h2) − 2](1 − h2) = 0 (3.31)

for the dimensionless cap height h which depends on the two dimensionless parameters

w ≡ 8π

3

|W |R2
ve

T Nin
and r ≡ 4π

3

ρex R3
ve

Nin
. (3.32)

The physically meaningful solutions for h = h(w, c) of (3.31) must lie within the interval
0 � h � 1 as before. Vesicle deflation corresponds to an increase in the particle number
density ρex of osmotically active particles in the exterior compartment, and, thus, to an increase
of the parameter r . For the case r = 1, the solution of equation (3.31) was briefly discussed
in [62].

3.4. Vesicle adhesion to structured substrate surfaces

Weak and strong adhesion. Now, we consider the adhesion of vesicles to a chemically
structured surface which contains two types of surface domains, γ and δ. These two types of
domains are characterized by two different adhesion energies per unit area, Wγ and Wδ, with
|Wδ| < |Wγ |.

If the contact line of an adhering vesicle is located within the γ domain, the contact
curvature radius along this contact line is given by

Rco,γ ≡ (κ/2|Wγ |)1/2. (3.33)
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Likewise, for a contact line within the δ domain, the contact curvature radius is

Rco,δ ≡ (κ/2|Wδ|)1/2 > Rco,γ . (3.34)

On the other hand, if a contact line segment (CLS) of the vesicle is pinned to a (γ δ)

domain boundary, the contact curvature radius Rco = Rco,p is not fixed but can vary within the
range [11]

Rco,γ � Rco,p � Rco,δ (pinned CLS). (3.35)

In the following, we will focus on γ domains which are strongly adhesive. Thus, if the
contact line of the vesicle lies within the γ domain, the contact curvature radius satisfies the
inequality

Rco = Rco,γ 
 Rve (3.36)

and the vesicle can be characterized by an effective contact angle θeff,γ which satisfies the
Young-type equation

|Wγ | = �me[1 + cos(θeff,γ )] (3.37)

where θeff,γ depends again on vesicle volume and total membrane area.
By definition, the δ domain is taken to be less adhesive than the γ domain with

|Wδ| < |Wγ |. If the δ domain is strongly adhesive as well, a contact line within this domain can
also be characterized by an effective contact angle. If the δ domain is only weakly adhesive,
on the other hand, the contact curvature is large and satisfies

Rco = Rco,δ � Rve. (3.38)

In the latter case, a contact line located within the δ domain cannot be characterized by an
effective contact angle. Likewise, it makes no sense to talk about a contact angle if the δ

domain is nonadhesive with Wδ = 0 and Rco,δ = ∞.

Circular adhesive domains. Now, let us consider a single vesicle adhering to a circular γ

domain. Initially, the vesicle has the shape of a spherical cap with a relatively large volume
Vin and a relatively small adhesion area Aad which is contained within the γ domain. Now,
the vesicle is deflated which leads to an increase of the adhesion area until this area covers the
γ domain completely and the contact line of the vesicle is located on top of the γ δ domain
boundary.

If the vesicle is deflated beyond this point, the contact line stays pinned to the γ δ domain
boundary but the membrane tension decreases which implies that the contact curvature Rco,p

increases. As soon as this contact curvature has reached the upper limit Rco,p = Rco,δ , the
vesicle starts to spread onto the δ domain.

It is interesting to note that the vesicle will not spread onto the δ domain at all if this
domain is nonadhesive. In the latter situation, the vesicle becomes more and more deflated
while its adhesive area remains unchanged and equal to the area of the γ domain4. Therefore,
a chemically structured surface with |Wδ| = 0 provides a useful method to probe the shape
transformations of adhering vesicles.

4 In this way, one should also be able to construct black lipid membranes which are essentially tensionless. Thus,
consider a circular γ domain of radius Rγ , which contains a circular ‘hole’ or ‘pit’ with a smaller radius, say Rγ /2.
The interior sidewalls of the ‘hole’ consist of a different, membrane-repelling material (such as δ). A membrane
segment which covers this γ domain and, thus, spans the ‘hole’ will be essentially tensionless.
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Striped adhesive domains. If the vesicle is attracted towards a long striped γ domain, it
spreads over this domain until the adhesive and the osmotic stresses are balanced as in (3.26).
If we start with a sufficiently large vesicle, its adhesion area will then cover the whole width
of the stripe and its contact line will consist of lateral segments on top of the γ δ domain
boundaries and of transverse segments within the γ domain. As such a vesicle is deflated, it
will further spread onto the striped γ domain.

As the vesicle is deflated and spreads on the γ stripe with fixed membrane area Ame, both
its volume Vin and its contact angle θeff,γ at the transverse contact line segments must decrease
monotonically provided the volume is sufficiently small. Indeed, the contact angle θeff,γ must
vanish in the limit of small Vin, and the vesicle then forms a flat pancake, which covers a long
segment of the striped γ domain with area Ame/2. Thus, as we deflate the vesicle for fixed
membrane area, the volume Vin and the contact angle θeff,γ cannot be varied independently but
must satisfy a certain functional relationship.

In order to derive this relationship for small volumes, we consider channel-like vesicles
which resemble the liquid channels discussed in section 2.3 above. In fact, we will use the same
equation (2.13) as for liquid channels but incorporate the constraint of fixed membrane area.
Thus, let us consider a vesicle which has the shape of a cylindrical segment. Its membrane area
consists (i) of this cylindrical segment and (ii) of the adhesion area which is equal to Lγ Lch

where Lγ is the width of the striped γ domain and Lch is the lateral extension of the cylindrical
channel. The lateral contact line is pinned to the γ δ domain boundaries; the contact angle
along these pinned contact line segments has the constant value θ = θp. The end caps of the
channel-like vesicles are again replaced by two auxiliary walls as in section 2.3.

For these channel-like vesicles, the vesicle volume Vin, the membrane area Ame, and the
contact angle θp are related via

v ≡ Vin

Ame Lγ

= θp − sin θp cos θp

4 sin θp(θp + sin θp)
. (3.39)

Inversion of this relation leads to the contact angle θp as a function of the reduced volume v. If
this latter function is inserted into equation (2.13) with θγ ≡ θeff,γ , one obtains the functional
relationship

θeff,γ = arccos

(
θp(v)

2 sin θp(v)
+

cos θp(v)

2

)
(3.40)

between the effective contact angle θeff,γ along the transverse contact line segments and the
reduced volume v. For a vesicle with fixed membrane area Ame, this relationship determines the
deflation trajectory of the channel-like vesicles as given by θeff,γ = θeff,γ (Vin). These vesicles
are locally stable for θp < π/2 or v = Vin/Ame Lγ < vmax with vmax = π/(4π + 8) � 0.1528
which corresponds to the limiting value θeff,γ = θ∞

ch = arccos(π/4) � 38◦ of the effective
contact angle along the transverse contact line segment.

The channel-like vesicles just described should provide good approximations to the real
shapes of the adhering vesicle in the limit of small volume. This expectation is confirmed by
numerical minimization of the corresponding free energy functional which leads to the deflation
trajectories as shown in figure 3. In this figure, the numerically determined trajectories (full
curves) approach the trajectories as given by (3.40) (dashed curves) in the limit of small volume
and small contact angle.

In addition, the numerical minimization reveals that the deflation trajectories have an S-
like form, see figure 3, which consists of three segments and corresponds to the three different
morphologies (bu), (bu*), and (ch) displayed in figure 4. For large volumes, the vesicle attains
the bulge shapes (bu) which are similar to localized liquid droplets. In this latter case, the
effective contact angle decreases monotonically with decreasing volume as expected. For
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Figure 3. Shape bifurcation diagram for a vesicle on top of a strongly adhesive γ stripe. The
two coordinates correspond to the effective contact angle θeff,γ on the γ domain and to the vesicle
volume V ≡ Vin in units of L3

γ where Lγ denotes the width of the striped domain. The deflation
trajectories I, II, III, and IV have been determined numerically and correspond to fixed vesicle
area Ame with Ame/L2

γ = 10, 20, 30, and 40, respectively. The dotted curves for small volumes
correspond to the relation as given by (3.40). The deflation trajectories II, III, and IV touch the
two lines θeff,γ = θbu and θeff,γ = θch which represent the instability lines for droplets as shown
in figure 2.

Figure 4. The three morphologies (bu), (bu*),
and (ch) which the adhering vesicle attains
along a deflation trajectory as shown in figure 3.
The example shown here is for fixed membrane
area Ame/L2

γ = 40 corresponding to the
upmost deflation trajectory in figure 3. The
three shapes (bu), (bu*), and (ch) have the
adhesion areas Aad /L2

γ = 6, 12, and 16 and the
effective contact angles θeff,γ � 34.5◦, 24.5◦ ,
and 38◦, respectively.

intermediate volumes, one finds bulge shapes (bu*) with long ‘sleeves’ along the γ stripe.
These shapes are stabilized by the constraint of constant membrane area and are absent for
liquid droplets. Surprisingly, the effective contact angle of the shapes (bu*) increases as
the vesicle is deflated. Finally, for small volumes, one has channel shapes (ch) which are
approximately described by (3.39) and (3.40) and which are very similar to the corresponding
liquid channels. For these channel states, the effective contact angle θeff,γ decreases again as
the volume is further decreased.

The shape evolution just described applies to all deflation trajectories displayed in figure 3.
For larger membrane areas Ame, the deflation trajectories seem to involve a morphological
transition which is, however, rather weak since the free energy differences are rather small.
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(a) (b) 0 s 3 s

6 s 16 s 35 s

Figure 5. Giant vesicle which adheres to two striped surface domains which represent the γ

domains. (a) The two surface domains without the vesicle. Each γ stripe has a length of 50 µm
and a width of 5 µm; the separation of the two stripes is 5 µm as well. (b) The free vesicle after
release from the micropipette. The remaining five images show the time evolution of the vesicle
shape between 0 and 35 s as the vesicle spreads over the two striped domains.

Adhesion experiments. In this last subsection, we will report preliminary experimental
observations on vesicles which strongly adhere to a chemically structured glass surface. The
γ domains are prepared by vapour deposition of chromium and gold through a custom made
grid. The final thickness of these surface domains is about 25 nm as confirmed by atomic force
microscopy and their lateral size varies from a few microns up to many tens of microns. A
self-assembled monolayer of aminoalkanethiol (HS(CH)11NH2) is formed on these γ domains
which then become positively charged in aqueous solution while the noncoated glass surface
is negatively charged.

Negatively charged vesicles in contact with these structured glass surfaces are attracted
towards the positively charged γ domains and repelled from the negatively charged δ

domains. These vesicles are prepared from a mixture of DOPC:DOPG (9:1) by the method of
electroformation in sucrose solution and subsequently diluted in isotonic glucose solution. The
adhering vesicles are observed by phase contrast microscopy. An example of such a vesicle is
shown in figure 5. In this case, a giant vesicle, which is essentially spherical with a diameter
of about 32 µm, is aspirated by a micropipette and brought into contact with two striped γ

domains. Inspection of figure 5 clearly shows that the vesicle adapts its shape in order to
spread over these domains. Similar observations were also made in [63]. What remains to
be done in order to probe the shape evolution of the adhering vesicle as predicted above is to
deflate them in a controlled manner.
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